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Abstract — In this paper we will investigate airborne 
hyperspectral imagery for mapping grain sorghum yield 
variability as compared with yield monitor data. All the spectral 
bands are used for yield variability mapping in order to fully use 
the plenty spectral information in hyperspectral imagery. Yield 
variability mapping is achieved by estimating the fractional 
abundance image corresponding to the yield, where a pixel with 
high gray-scale value represents high yield in the area it covers. 
To accommodate in-field spectral variation, an unsupervised 
method is used. Preliminary study demonstrates the feasibility of 
this technique, although more thorough investigation is needed. 

Keywords: airborne hyperspectral imagery; yield variability 
mapping; linear mixture model; unsupervised linear unmixing; 
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I.   INTRODUCTION 

Remote sensing has been used to monitor crop growing 
conditions and estimate crop yields for many years. Quite a 
few work has been reported, such as in [1-8], where 
multispectral images were used.  

As remote sensing instruments have advanced recently, 
hyperspectral imaging receives a high degree of interest due to 
the fact that its high spectral resolution provides potential of 
more accurate material identification. A hyperspectral sensor 
collects data at hundreds of very narrow spectral bands, 
compared to several broad bands used by a multispectral 
sensor. So it has higher diagnostic power provided that spatial 
resolution is comparable.  

We have investigated the application of Hyperspectral 
imagery for mapping grain sorghum yield variability [9]. 
Correlation analysis showed that grain yield was significantly 
related to the image data for all the bands except for a few in 
the transitional range from the red to the near-infrared region. 
Principal component analysis (PCA) indicated that the first 
few principal components of the hyperspectral image 
accounted for 99% of variance in the data. Regression analysis 
based on principal components could quantify the amount of 
yield variability explained by image data. However, the 
number of principal components ought to be used is an open 
problem [10]; some major components may contain more 
noise than minor components since variance, the ranking 
criterion of PCA, is not a good criterion for image [11-12]. 
Stepwise regression analysis also performed directly on the 

yield and hyperspectral data identified the optimum bands and 
band combinations for mapping yield variability. However, 
optimum bands differed from field to field. 

So in this paper, we will investigate a linear mixture model 
based method for yield variability mapping by using all the 
spectral bands. It is based on the fact that the rough spatial 
resolution permits different materials to be present in the area 
covered by a single pixel. The linear mixture model says that a 
pixel reflectance in a visible-near infrared multispectral or 
hyperspectral image is the linear mixture from all independent 
pure materials (i.e., endmembers) in an image scene [1]. 
Linear unmixing analysis is a well-known technique in remote 
sensing image analysis. For an endmember corresponding to 
the yield, its fractional abundance is linearly related to the 
yield in the area covered by a pixel.  

II.   LINEAR MIXTURE MODEL BASED ANALYSIS 

Let L be the number of spectral bands and r an L×1 
column pixel vector in a multispectral or hyperspectral image. 
Assume that there are P endmembers in an image scene, 
which construct an L×P signature matrix [ ]PmmmM 21= , 
where jm  represents the j -th endmember. Assume that 

( )TPααα 21=α  is a P×1 abundance vector associated with 
r, where jα  denotes the abundance fraction of the jm  in r. In 
the linear mixture model, r is considered as the linear mixture 
of m1, m2, …, mP as  
 nMαr +=  (1) 
where n is included to account for either measurement or 
model error [1].  If M is assumed to be known and keeps to be 
the same for all the pixels, then the problem is to estimate α 
which is changed with pixel. 

A typical method to estimate α is the least squares 
approach. The estimate from the least squares solution is the 
one that minimizes the estimation residual  

 ( ) ( )MαrMαr
α

−− Tmin . (2) 

In order for the estimated abundance vector α to faithfully 
represent an image pixel vector r, two constraints are generally 
imposed on α in Eq. (1): (a) abundance sum-to-one constraint, 
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referred to as ASC, 1
1

=∑
=

P

p
pα ; and (b) abundance non-

negativity constraint, referred to as ANC, 0≥pα  for all 
Pp ≤≤1 . There is no closed-form solution to such a 

constrained linear unmixing problem. So an iterative method 
generally is used. 

Because pixel spectral signatures are changed during the  
sharpening process, an unsupervised method is used to 
estimate the endmember signatures in M as well as their 
abundances. The unsupervised fully constrained least squares 
linear mixture (UFCLSLU) algorithm is used for this purpose 
[8]. Initially, any arbitrary pixel vector can be selected as an 
initial desired object denoted by m0. However, a good choice 
may be a pixel vector with the maximum length, i.e., the 
brightest pixel in the image scene. It is assumed that all other 
pixel vectors in the image scene are pure pixels made up of m0 
with 100 % abundance. Of course, this is generally not true. 
So a pixel vector that has the largest least square error (LSE) 
between itself and m0 is found and selected as a first object 
pixel vector denoted by m1. Because the LSE between m0 and 
m1 is the largest, it can be expected that m1 is most distinct 
from m0. Then a signature matrix [ ]10mmM =  is formed. The 
FCLSLU algorithm is used to estimate the abundance 
fractions for m0 and m1, denoted by ( )r)1(

0α̂  and ( )r)1(
1α̂  for 

each pixel r respectively as the estimates from the first 
iteration. Now an optimal constrained linear mixture of m0 
and m1, ( ) ( ) 1

)1(
10

)1(
0 ˆˆ mrmr αα + , is computed to approximate 

the r. Then the LSE between r and this estimate linear mixture 
is calculated for all image pixel vectors r. Once again a pixel 
vector that yields the largest LSE will be selected to be a 
second object pixel vector m2. As expected, such a selected 
object pixel is the most dissimilar to m0 and m1. The same 
procedure with [ ]210 mmmM =  is repeated until the resulting 
LSE is below a prescribed error threshold η or enough 
endmembers are extracted. If there is partial knowledge of M 
available, then it can be used as initial m0 or M0.  

The ground truth data about the spectral signature of 
mature grain sorghum will be compared with signatures within 
matrix M using spectral angle mapper (SAM) [14]. The one 
closest to the ground truth is considered as the endmember 
related to grain sorghum yield, and its fractional abundance 
image will be used for yield mapping. Yield mapping will be 
achieved by finding the linear relationship between the 
fractional abundances to the collected yield data.  

III.   EXPERIMENT 

An airborne hyperspectral image was acquired using a 
CCD camera-based hyperspectral imaging system from a grain 
sorghum field during the 2000 growing season, and yield data 
were also collected from the fields using a yield monitor. The 
hyperspectral images contained 128 bands covering a spectral 

range from 457.2 to 921.7 nm with a band width of 3.63 nm. 
The images had a swath width of 640 pixels and each pixel 
had a gray level between 0 and 4095. The raw images were 
corrected for the geometric distortion caused by the motion of 
the aircraft. The corrected images were rectified to the UTM 
coordinate system with 1m resolution. The calibrated image 
data were then aggregated into images with a cell size of 9m. 
Figure 1 shows blue, green, red, and near-infrared bands in a 
subimage scene of size 450×450.   
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Figure 1.   Original  subimage of size 450×450.   

Assume there are ten distinctive endmembers present in 
this scene. Figure 2 lists ten endmember signatures extracted 
from the image scene using the unsupervised methods 
described in Section 2.  
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Figure 2.  Ten endmember signatures in matrix M.            
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Figure 3.   Fractional abundance images. 

Figure 3 shows the ten fractional abundance images, which 
corresponded to different materials. Obviusly, the eighth 
image α8 is for yield variability.  On this image, a pixel with 
high gray-scale value means the area it covers has high yield. 
We also compared it with yield data, and found out that gray-
scale values in this image is positively proportional to the 
collected yield data as expected. 

IV.   DISCUSSION 

The preliminary study demonstrates the feasibility of 
unsupervised linear unmixing in grain sorghum yield 
variability mapping. But more work is needed, in particular, on 
the influence of the number of endmembers used in the 
algorithm. 
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